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Model of clustering in the string phase of a shearing hard sphere colloidal dispersion

R. S. Farr*
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom

~Received 4 August 1997; revised manuscript received 12 May 1998!

We consider a system where shear thickening can only be produced by clustering. A model is presented for
the growth of clusters from a string phase, and the model is solved analytically in two and three dimensions for
the case of nearly circular and nearly spherical clusters. The equations are homogeneous and so do not predict
a preferred cluster size, but approximate results for the ratio of the first normal stress difference
N15sxx2syy to the viscous enhancement are obtained.@S1063-651X~98!08909-0#

PACS number~s!: 83.50.2v, 47.55.2t, 83.70.Hq
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I. INTRODUCTION

Continuous shear thickening, in which there is a smo
increase of viscosity,h with shear rateġ is observed in a
wide range of colloidal systems at sufficiently high shear r
~see, e.g.,@1# for a review of the field!.

We are concerned here with a fairly concentrated coll
in which all interactions and hydrodynamics may be appro
mated to be pairwise additive in the resistance matrix. The
fore a pair of particles (i , j ) at positionsr i , r j experience a
conservative repulsive force, given for the first by

Fi j
c 5 f ~r !er ~1!

for some functionf. Herer 5ur i2r j u ander5(r j2r i)/r is a
unit vector in the direction of the line of centers.

Furthermore, if there is no viscoelastic coupling such
pair experiences a dissipative force, given for the first by

Fi j
d 52a~r !•~vi2vj !2bvi . ~2!

Herevi andvj are the velocities of the closest surface poi
of the two bodies,b represents a one particle drag ter
through the fluid, anda(r ) is a positive semidefinite rank
tensor, whose components are the various pair drag co
cients.

We consider the colloid particles to have a central h
core of radiusr c on which the solvent satisfies stick boun
ary conditions. This said, we expect real systems descr
by Eqs.~1! and ~2! to fall into two categories. The first is
where the volume fraction of the cores is high; the hydro
namics is now well approximated by lubrication theory a
plied to the gaps between the particles, and a form of Eq.~2!
will hold in which b is relatively unimportant. The secon
case, which we do not consider here, will be the dilute lim
where the conservative interactions become pair interact
and if we adopt a Rouse level~free draining! approximation
to the hydrodynamics, Eq.~2! will hold, with a negligible.

The viscous interactions of Eq.~2! will dissipate a power

P5
1

2(i , j @~vi2vj !•a•~vi2vj !12buvi u2#. ~3!
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From this we can calculate the shear stresss which will be
related toP̃, the power dissipated per unit volume~in three
dimensions! or per unit area~in two dimensions! by P̃

5sġ.
For such a system under simple shear, one can ima

two mechanisms whereby the viscosity may increase w
shear rate.

First, even in the absence of shear thickening, the st
required to drive the system increases with shear rate. F
disordered system, a typical pair of particles near the co
pression direction of the flow must be driven together w
greater force, to generate this stress. If the conservative f
of Eq. ~1! is soft, then the minimum separation of pairs
particles in this direction will decrease, and consequently
typical viscous interactions, we expectua(r )u to increase. In
a continuous flow, the velocities in Eqs.~2! and~3! will scale
with ġ and so the bulk viscosity must increase@2#.

On the other hand, if extended rigid structures form in t
flow @3–5#, the relative velocities between some pairs of p
ticles are forced to increase for a given shear rate. These
produce a greater power dissipation from Eq.~3! and hence a
greater bulk viscosity compared with when there is no cl
tering.

In this paper, I shall try to separate the effects of the
two mechanisms by considering a system in which the firs
inoperative. The system consists of colloidal particles wit
hard repulsive potential, for example, an infinite potent
step preventing particle overlap, together with possibly
weak repulsive part, or Brownian motion. The function
Eq. ~1! is therefore assumed to approximate the form

f ~r !5H ` for r ,2a

F0 for r ,2a
~4!

for someF0 and a.r c . This rigorously prevents particle
approaching more closely thanr 52a.

In order to prevent shear thickening from the first mech
nism, we consider the case where either the fluid is f
draining ~that is, we adopt a Rouse level approximation
the hydrodynamics which will be a very poor approximati
at high concentrations!, or the drag coefficients are indepe
dent of separation, save for some cutoff at separations
eral times larger than the particle radiusa. We can arrange
this second case in the following way: the drag coefficie
3377 © 1998 The American Physical Society
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3378 PRE 58R. S. FARR
of Eq. ~2! arise from fluid flow in the gaps between particle
treated in the lubrication approximation. Some of the co
ponents ofa will therefore diverge as the hard cores com
into contact ~a particle separation of 2r c). The repulsive
force of Eq.~4! thus serves to hold the particles at a grea
separation wherea, although not strictly constant, is
weaker function of the interparticle gap.

We must now consider what experimental systems c
form to the requirements of our model; a reasonable appr
mation may be produced by a swollen polymer brush che
cally attached to the particle surface. Here the conserva
force is produced entropically as the brush is compres
and the drag coefficients are well represented by lubrica
theory for closely approaching particles.

Large computer simulations of such colloidal systems
der simple shear have recently been performed@4,5#. It is
observed that at low shear rates, the particles order in
‘‘string phase’’ in which the particle centers are arranged
lines parallel to the ‘‘flow’’ direction. These lines frequent
form a well ordered, triangular array in the ‘‘gradien
vorticity’’ ( y-z) plane.~See@7# for a theoretical treatment.!

If the shear rate is increased, the importance of the c
stant repulsive term in Eq.~4! which stabilizes the string
order will be reduced. It is then observed that disorde
regions~as well as dislocations! appear in the flow@4,6# and
this change is associated with shear thickening~although in
other systems, shear thickening can occur from a disord
state!. It should be noted, however, that in the simulatio
the disordered regions are often comparable in size to
simulation cell and so their dynamics are affected by
periodic boundary conditions.

The sections below describe and solve a model for
dynamics of an isolated cluster in such a dispersion. If cl
ters are not dilute, or grow very large, as will happen if t
volume fraction defined on the hard sphere radiusa is high,
then the isolated clusters will aggregate, and we expect s
kind of logjam ~as analyzed, for example, in@8#!.

II. THE MODEL

Consider either a two dimensional~2D!, or three dimen-
sional simple shear flow wherex̂,ŷ,ẑ are unit vectors in the
‘‘flow,’’ ‘‘gradient,’’ and ~in 3D only! ‘‘vorticity’’ direc-
tions, respectively. The bulk string phase deforms in sim
shear, with a uniform strain rateġ, and we consider an iso
lated cluster that has formed in this bulk flow. The cluste
a random glassy region of the colloidal particles compos
the string phase, and resists the local affine deformatioġ
present in the string phase. It therefore rotates as a rigid b
with some angular velocityv5v ẑ in the bulk flow of par-
ticles. The situation is shown schematically for the 2D ca
in Fig. 1.

We consider the case where the dimensions of the clu
are much greater thana, the colloid radius. In this limit, the
string phase may be regarded as a continuum.

Let the unit normal to the surface of the cluster at posit
r from its center ben̂, then the velocity of this point of the
cluster is

v5v3r. ~5!
,
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The local velocity of the string phase, which, in a free dra
ing approximation to the hydrodynamics~discussed below!,
we assume to be approximately undisturbed by the prese
of the cluster, will be

u52ġ„r–ŷ…x̂. ~6!

There will therefore be a flux of particles onto the clus
surface, given by

J5n̂–~v2u!r0 , ~7!

wherer0 is the number of particles per unit area~2D! or per
unit volume~3D! in this phase.

The fluxJ according to this formula may have either sig
It is a simple matter to write down an equation embodyi
the assumption that particles may be accreted with gre
ease than they are lost by the cluster@as an extreme example
one might setJ50 if n̂–(v2u),0#. However, this nonlinear
constraint leads to a difficult mathematical problem as
flux J would no longer be a linear function ofn̂–(v2u) and
Eqs.~8! and ~9! would be fully nonlinear partial differentia
equations. A numerical solution would then be necessary

For our system, where the hydrodynamic forces are in
pendent of separation for small separations, I shall make
simpler assumption that the particles are torn from the clu
in the same manner in which they are added. We thus in
pret negativeJ as removal of particles from the cluster, an
the growth equation for the cluster may readily be co
structed. In 2D, we adopt plane polar coordinates$r ,u% with
theu50 axis being parallel tox̂, while in 3D we use spheri-
cal polars$r ,u,f% with u50 being in theẑ direction, and
u5p/2, f50 in the x̂ direction. In these coordinates, th
growth equation in two dimensions becomes

]r

]t
1v

]r

]u
5Ja2S a

hD , ~8!

while in three dimensions we find

]r

]t
1v

]r

]f
5Ja3S a

hD , ~9!

whereh is the gap between the hard spheres~of radiusa! in
the string phase. These equations are homogeneous inr and
therefore do not single out a preferred size for the cluster
the flow.

FIG. 1. Schematic picture of a cluster in a simple shear flowv
~dimensions s21) is the angular velocity of the cluster, approx
mately equal to one-half the shear rate.
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PRE 58 3379MODEL OF CLUSTERING IN THE STRING PHASE OF . . .
The factor of (a/h) in Eqs. ~8! and ~9! represents the
effect of the volume excluded to the particles, reflecting
fact that the surface of the cluster is a density wave in
concentrated system, and so its velocity may be high, e
when the individual particles are moving slowly. This is t
same physics that governs the growth of traffic jams on
ban streets; the individual vehicles may be moving slow
while the boundary between moving and stationary vehic
can have a much larger velocity~in the opposite direction!.
See, for example,@9#.

Given that the system may be concentrated, it is impor
to consider the applicability of the free draining approxim
tion in the growth equation. For a strictly 2D system, it
clearly inappropriate, as the particle contacts will percolat
a low area fraction; however, if the 2D system consists
disks at a fluid-fluid interface, then free draining may be
good approximation up to high area fraction.

In 3D, we define a ‘‘hydrodynamic volume fraction
fhydr for the string phase, in the following manner: if th
suspension is diluted with solvent to increase its volume b
large factorL, then the volume fractionfdlt of this new
dilute suspension may be measured from its bulk visco
hdlt , using the Einstein relation

hdlt5h0@11~5/2!fdlt#. ~10!

We then define the hydrodynamic volume fraction by

fhydr5Lfdlt . ~11!

Let the string phase be at a volume fractionfhard, defined on
the radius of hard sphere repulsion; we therefore exp
fhydr<fhard<fmax for some maximum packing fractio
fmax. Furthermore, letfclus be the hydrodynamic volume
fraction in the cluster. Then (a/h) will diverge as

a

h
;

1

12fhard/fmax
~12!

close tofmax. Let the physical rate of approach of particl
to the cluster surface bevp5n̂–„v2u…, then the speed of the
cluster surface will be@Eq. ~9!#

vsurf5a3r0S a

hD vp;
a3r0vp

12fhard/fmax
, ~13!

and the average back flow velocity will be

vback'
fclus2fhydr

12fhydr
vp . ~14!

In particular, the ratiovback/vsurf→0 as the maximum pack
ing fraction fmax is approached. Thus back flow becom
negligible and it is a reasonable approximation that the
locity of particles in the string phase is not disturbed by
presence of the cluster in this limit.

III. THE EQUATION FOR NEARLY CIRCULAR
CLUSTERS IN 2D

For a nearly circular cluster,e5(1/r )(]r /]u) is a small
number and consequently I truncate Eq.~5!, retaining only
e
e
n

r-
,
s

nt
-

at
f

a

a

ty

ct

-
e

terms ofO(e). For e,0.4, this corresponds to an axial rat
for a cluster, of less than 2. Furthermore, for such a clus

v5
ġ

2
1O~e!, ~15!

therefore in the basis$x̂,ŷ%

n̂'S cosu1
1

r

]r

]u
sin u

sin u2
1

r

]r

]u
cosu

D , ~16!

and the flux of particles onto the surface is, from Eq.~7!,

J5r0S a

hD ġ

2F r sin~2u!2
]r

]u
cos~2u!G . ~17!

The equation of motion after the change of variables

t5 t̃ ġ/2, ~18!

r0a3

h
5r, ~19!

and dropping the tilde on the new time variable, is

]r

]t
1

]r

]u
5rF r sin~2u!2

]r

]u
cos~2u!G . ~20!

Equation~20! may readily be transformed into a conserv
tion law:

]r 2

]t
1

]

]u
$r 2@11r cos~2u!#%50, ~21!

from which we see that

d

dtE0

2p1

2
r 2du52

r 2

2
@11r cos~2u!#u0

2p50, ~22!

or in other words, the total area of the cluster is conserv
The cluster does not therefore increase the number of

ticles it contains, but it will increase the viscosity of th
suspension as it becomes more elongated in the compre
or extensional directions@i.e., (x̂6 ŷ)/A2#.

Equation~21! possesses the obvious stationary solutio

r 2}
1

11r cos~2u!
, ~23!

which is an ellipse with major axis parallel to the ‘‘gradient
direction. This solution has the unphysical limit that the ra
of major to minor axes diverges asr→1. The solution is of
course not valid in this limit, but the origin of the divergenc
may readily be seen; for, suppose the cluster becomes
tended in the compression direction from accreting partic
and then rotates a little beyond this direction. Accretion w
then occur preferentially on the side nearest the flow dir
tion, and the effective angular velocity of the boundary of t
cluster will be reduced fromġ/2. The r→1 limit corre-
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3380 PRE 58R. S. FARR
sponds to this effective angular velocity tending to zero,
will be seen quantitatively in the next section. In practic
what will actually happen is that as the axial ratio of t
ellipse increases, the approximation that the material ang
velocity v of the cluster stays equal toġ/2 will break down.
The cluster will rotate more nearly as a one dimensional r
i.e.,

v rod5ġ sin2 umaj, ~24!

whereumaj is the angle the major axis of the ellipse mak
with x̂, and will be greater thanp/4 so thatv rod.ġ/2. This
will alleviate the problem, sweeping the growing clust
more rapidly past the compression direction.

IV. ANALYTIC SOLUTION FOR NEARLY CIRCULAR
CLUSTERS

To solve Eq.~21!, which is a quasilinear partial differen
tial equation~QLPDE!, we introduce a characteristic coord
nates, so that

r 25r 2~s!, u5u~s!, t5t~s!. ~25!

Therefore

dr2

ds
5

]r 2

]u

du

ds
1

]r 2

]t

dt

ds
, ~26!

and by comparison with Eq.~21! we find

dt

ds
51, ~27!

dr2

ds
52r 2r sin~2u!, ~28!

du

ds
511r cos~2u!. ~29!

From Eqs.~28! and ~29! we see that

r 2}S ds

du D , ~30!

which allows an easy analytic solution, for let us introduc
new variableu0 which is an integration constant of Eq.~29!,
and allows us to specify the initial conditions

r 2~u,t50!5r 0
2~u0!, ~31!

then the solution is

r 2~u,t !5
r 0

2~u0!@11r cos~2u0!#

11r cos~2u!
, ~32!

where

u5tan21F S 11r

12r D 1/2

tan$A12r2~ t1c!%G ~33!
s
,

lar

d,

r

a

c5
1

A12r2
tan21F S 12r

11r D 1/2

tanu0G . ~34!

A solution in the formr (u,t) may then be obtained by elimi
natingu0 between Eqs.~32!, ~33!, and~34!.

For circular initial conditions this leads to

r ~u,t !5
1

A11r cos~2u!

3H 11rS 12S 11r

12r D tan2D

11S 11r

12r D tan2D
D J 1/2

, ~35!

where

D5tan21H S 12r

11r D 1/2

tanuJ 2A12r2t. ~36!

The curve describing the cluster outline is therefore perio
in time, with periodp/(ġA12r2).

A plot of this solution at nine equally spaced times co
ering a complete period of the motion andr50.5 is shown in
Fig. 2.

V. THE EQUATION FOR NEARLY SPHERICAL
CLUSTERS IN 3D

In analogy to two dimensions, we assume that b
(1/r )]r /]f and (1/r )]r /]u!1. Neglecting the squares o
small quantities, we find that since

n̂}
]r

]f
3

]r

]u
, ~37!

FIG. 2. Solution for a two dimensional cluster, withr50.5.
Nine configurations~shapes of the cluster! ~a!–~i! are shown for
equally spaced times covering a whole period of the evolution,
such that in~i! the cluster has returned to its initial state. The flo
direction is left-right, and the initial shape of the cluster, shown
~a!, is a circle.
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then in the basis$x̂,ŷ,ẑ%,

n̂'S sin u cosf1
sin f

r sin u

]r

]f
2

cosu cosf

r

]r

]u

sin u sin f2
cosf

r sin u

]r

]f
2

cosu sin f

r

]r

]u

cosu1
sin u

r

]r

]u

D .

~38!

Thus

J5r0S a

hD ġ

2F r sin~2f!sin2u2cos~2f!
]r

]f

2
1

2
sin~2f!sin~2u!

]r

]uG , ~39!

and with a change of variables

t̃ 5
tġ

2
, ~40!

r5
r0a4

h
, ~41!

and dropping the tilde on the new time coordinate, the eq
tion of motion becomes

]r

]t
1

]r

]f
5rr sin~2f!sin2u2r cos~2f!

]r

]f

2
r

2
sin~2f!sin~2u!

]r

]u
. ~42!

This may readily be transformed into the conservation la

]r 3

]t
1

]

]f
$r 3@11r cos~2f!#%

1
1

sin u

]

]u
$r 3@sin~2f!cosu sin2u#r%50, ~43!

from which we see that

d

dtE0

2pE
0

p1

3
r 3sin ududf

52E
u50

p

sin u
r 3

3
@11r cos~2f!#U

f50

2p

du

2E
f50

2p

r
r 3

3
@sin~2f!cosu sin2 u#U

u50

p

df5010.

~44!

In other words, the volume and hence total number of p
ticles in the cluster is conserved.

The stationary solutions to Eq.~43! are given by separa
tion of variables: let

r 3~u,f,t !5A~u!B~f!, ~45!
a-

r-

then from Eq.~43!

1

rB sin~2f!

d

df
@B„11r cos~2f!…#52l, ~46!

1

A sin u

d

du
@A cosu sin2 u#51l, ~47!

where l is an arbitrary real separation constant. Equat
~46! solves immediately to give

B~f!}expF ~l22!
r

2
cos~2f!G , ~48!

while Eq. ~47! in the rangeuP(0,p/2) gives

A~u!5
A12cosu

sin2 u
E

u
*

u 2l sin2 u8

A12cosu8
du8, ~49!

whereu* is arbitrary. The same qualifications apply to th
solution as to the two dimensional case@Eq. ~23!#.

VI. ANALYTIC SOLUTION FOR NEARLY SPHERICAL
CLUSTERS

Equation~43! is once more a QLPDE, which we tackle b
introducing a characteristic coordinates: Let

t5t~s!, u5u~s!,

f5f~s!, r 35r 3~s!. ~50!

Then Eq.~42! leads to

dt

ds
51, ~51!

df

ds
511r cos~2f!, ~52!

du

ds
5r sin~2f!cosu sin u, ~53!

dr3

ds
5rr 3~21sin2 u22 cos2 u!sin~2f!, ~54!

and from the conservation law,

1

r 3

dr3

ds
52

d2f

ds2

ds

df
2F sin u

sin~2f!

du

dsG
21 d

dsF sin u

sin~2f!

du

dsG .
~55!

Equation~55! integrates to

r 3}
1

@sin u/sin~2f!#~df/ds!~du/ds!
. ~56!

Upon integrating Eqs.~52! and ~53!, we will introduce
two constants, which we choose so thatf5f0 , u5u0
whens5t50. The initial shape of the cluster is described
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3382 PRE 58R. S. FARR
r 3~u,f,t50!5r 0
3~u0 ,f0!. ~57!

From Eq.~56! the solution for all subsequent times will be

r 3~u,f,t !5
r 0

3~u0 ,f0!@11r cos~2f0!#cosu0 sin2 u0

@11r cos~2f!#cosu sin2 u
.

~58!

Equations~51! and~52! readily integrate as in the 2D cas
to

tan21F S 12r

11r D 1/2

tan fG2tan21F S 12r

11r D 1/2

tan f0G
5tA12r2, ~59!

while for Eq. ~53! we have

E
u85u0

u du8

cosu8 sin u8
5E

t850

t

r sin@2f~ t8!#
dt8

df
df

5E
f85f0

f

r
sin~2f8!

11r cos~2f8!
df8,

~60!

which leads to

S cos~2u!2sin~2u!

sin~2u! D @11r cos~2f!#1/2

5S cos~2u0!2sin~2u0!

sin~2u0! D @11r cos~2f0!#1/2. ~61!

Eliminating u0 and f0 between Eqs.~58!, ~59!, and ~61!
leads to an equation forr (u,f,t). Again the solution is pe-
riodic in time, with periodp/(ġA12r2).

Figure 3 shows the solution for an initially spherical clu
ter with r50.5. The way the figures are shown is to choo
750 random directions in space, and for each, the co
sponding point on the surface of the cluster is shown p
jected onto the ‘‘flow-gradient’’~i.e., x̂2 ŷ) plane. This gives
some indication of the three dimensional form of the clus
The images are for nine equally spaced times coverin
complete period of the motion.

VII. ESTIMATES OF THE FIRST NORMAL STRESS
DIFFERENCE

We now turn to the possible rheological consequence
the model, and in particular try to estimate the first norm
stress differenceN15sxx2syy . In Sec. II it was shown tha
the solvent back flow from particles aggregating onto
cluster surface may be neglected at high volume fract
thus justifying the assumption that the surrounding str
phase is undistorted by the presence of the cluster. This
the hydrodynamic interactions of a collection of particles
not well modeled by a purely free draining~Rouse level!
approximation. Furthermore, the absence of a signific
back flow, which was necessary to derive the growth dyna
ics of the clusters, does not rule out the possibility of a p
drag contribution to the hydrodynamic interactions, whi
e
e-
-

r.
a

of
l

e
n,
g
id,
e

nt
-

ir

will turn out to be the factor controlling the value ofN1 .
From the growth equations derived in Secs. IV and VI,

see that in two dimensions the clusters which are circula
time t50 are unchanged by the transformation$t→2t, u
→p2u%, while in three dimensions they are invariant und
$t→2t, f→p2f, u→u%. Therefore if the stress tenso
is calculated in a free draining~Stokes drag! approximation,
we will find that N150.

The pair drag part of the hydrodynamics thus provides
only contribution to the first normal stress difference, and
order to crudely estimate the effect of the cluster upon
stress tensors, consider the radial component of the veloci
of particles relative to the cluster surface, i.e.,

v r̂5„v2u…–r̂ , ~62!

where positivev r̂ corresponds to particles leaving the surfa
of the cluster. We now consider another important effect
the hard sphere conservative interaction, for it introduce
physical distinction between the directions wherev r̂ has dif-
ferent signs. Whenv r̂ is negative, the bonds in the cluste
cannot deform, because the particles press against their
sphere potentials. Consequently, the compressive force in
bonds along a radius may be estimated as

f comp'av r̂ , ~63!

wherea is the relevant pair drag coefficient. On the oth
hand, when a particle is leaving the surface, all the bo
deep inside the cluster can deform a little, in order to br

FIG. 3. Solution for a three dimensional cluster, withr50.5.
Nine configurations~shapes of the cluster! ~a!–~i! are shown for
equally spaced times covering a whole period of the evolution. T
flow direction is left-right. The cluster is initially spherical in~a!,
and returns to this shape in~i!. To give some impression of the thre
dimensional form of the cluster, what is plotted is the projection

random points on the cluster surface, onto thex̂-ŷ plane.
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the surface velocity up tov r̂ . An estimate of the tensiona
force in the bonds along a radius is therefore

f ext'a
a

r
v r̂ . ~64!

Let H(x) be the Heaviside step function,

H~x!5H 0 if x,0

1 if x>0,
~65!

then we may estimate the contribution to the stress in
dispersion from the cluster by, in 2D,

s2D'2
1

Aclus
E

0

2pr 2du

2a2
aav r̂ r̂ r̂ FH~v r̂ !1H~2v r̂ !

a

r G ,
~66!

while in 3D

s3D'2
1

Vclus
E

0

2pE
0

pr 3 sin ududf

3a3
aav r̂

3 r̂ r̂ FH~v r̂ !1H~2v r̂ !
a

r G , ~67!

whereAclus is the cluster area in 2D, andVclus its volume in
3D.

In both of Eqs.~66! and ~67!, the first term, from the
compressive load, will dominate for large clusters.

Just retaining this term, we can use it to find a value
the ratio of the first normal stress differenceN1 to the vis-
cosity enhancement due to the large cluster,h5usxyu/ġ.
This ratio is significant, because, provided the clusters
large, it does not depend upon either the size of the clus
or their concentration in the suspension. The normal st
differenceN1 is also an easily measurable characteristic
the flow in experiments and simulations.

Figure 4 shows an estimate of the ratioN1 /usxyu from
Eqs. ~66! and ~67! computed as an average over a who
period of the motion@that is, a time ofp/(ġA12r2)#, for
two and three dimensions at different values ofr, with cir-
e

r

re
rs,
ss
f

cular and spherical initial conditions, respectively. The fi
ures also contain data for the maximal axial ratio of the
lipsoids in the flow, to give an indication of the range ofr
for which the results are valid.

In both cases, we see that extended clusters are evide
by a positiveN1, and bothN1 /usxyu and the maximal axial
ratio are proportional tor for small r. The divergence in
N1 /usxyu at r51 is due to the divergence in the axial rati
which, as discussed in Sec. III, is unphysical.
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FIG. 4. ~a! Plot of the maximal axial ratior max/r min ~no units!
encountered in one period of the motion of an initially circular a
an initially spherical cluster, as a function ofr ~no units!. The
periodic nature of the motion is illustrated forr50.5 in Figs. 2 and
3. ~b! Plot of the time average ratioN1 /usxyu ~no units! using the
first term in Eqs.~66! and~67!. The average is performed over on
period of the motion of an initially circular and an initially spheric
cluster and plotted as a function ofr ~no units!.
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