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Model of clustering in the string phase of a shearing hard sphere colloidal dispersion
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We consider a system where shear thickening can only be produced by clustering. A model is presented for
the growth of clusters from a string phase, and the model is solved analytically in two and three dimensions for
the case of nearly circular and nearly spherical clusters. The equations are homogeneous and so do not predict
a preferred cluster size, but approximate results for the ratio of the first normal stress difference
N, =0y oy to the viscous enhancement are obtaij€d.063-651X98)08909-0

PACS numbegps): 83.50-v, 47.55-t, 83.70.Hq

I. INTRODUCTION From this we can calculate the shear stresshich will be

related toP, the power dissipated per unit volunia three

Continuous shear thickening, in which there is a Smoo”l:iimensiona; or per unit area(in two dimensions by P
increase of viscosityy with shear ratey is observed ina _ :

wide range of colloidal systems at sufficiently high shear rate Fo.r such a system under simple shear, one can imagine

(see, e.g.[1] for a review of the f|eIQi. . fwo mechanisms whereby the viscosity may increase with
We are concerned here with a fairly concentrated colloi hear rate

in which all inte_rac_tions aT‘?‘ hydrodynar_nics may be_approxi- First, even in the absence of shear thickening, the stress
mated to _be pairwise a_dt_jltlve In ﬂ_"_a resistance ma.tnx. Therer'equired to drive the system increases with shear rate. For a
fore a pair of particlesi(j) at positionsr;, r; experience a isordered system, a typical pair of particles near the com-
conservative repulsive force, given for the first by pression direction of the flow must be driven together with
e =f(r)e 1) greater for_ce, to generate thi; stress. If the cqnservati\(e force
1 of Eqg. (1) is soft, then the minimum separation of pairs of
for some functiorf. Herer=|ri—rj| ande,=(r,—r)/r is a par.ticles. in this .directio_n will decrease, and cqnsequently for
unit vector in the direction of the line of centers. typ|call viscous interactions, we (_axpetot(r)| fo increase. In
Furthermore, if there is no viscoelastic coupling such aa'contmuous flow, the velocities in Ed&) and(3) will scale

pair experiences a dissipative force, given for the first by With v and so the bulk viscosity must increg.
On the other hand, if extended rigid structures form in the

Fﬂ- =—a(r)-(vi—Vj)— Bv;. (2) flow[3-5], the relative velocities between some pairs of par-
ticles are forced to increase for a given shear rate. These will
Herev; andv; are the velocities of the closest surface pointsproduce a greater power dissipation from E).and hence a
of the two bodies,s represents a one particle drag term greater bulk viscosity compared with when there is no clus-
through the fluid, andx(r) is a positive semidefinite rank 2 tering.
tensor, whose components are the various pair drag coeffi- In this paper, | shall try to separate the effects of these
cients. two mechanisms by considering a system in which the first is
We consider the colloid particles to have a central hardnoperative. The system consists of colloidal particles with a
core of radius; on which the solvent satisfies stick bound- hard repulsive potential, for example, an infinite potential
ary conditions. This said, we expect real systems describestep preventing particle overlap, together with possibly a
by Egs.(1) and(2) to fall into two categories. The first is weak repulsive part, or Brownian motion. The function in
where the volume fraction of the cores is high; the hydrody-Eq. (1) is therefore assumed to approximate the form
namics is now well approximated by lubrication theory ap-
plied to the gaps between the particles, and a form of(Bq. w for r<2a
will hold in which g is relatively unimportant. The second f(r)= Fo for r<2a @
case, which we do not consider here, will be the dilute limit
where the conservative interactions become pair interactiongr someF, anda>r.. This rigorously prevents particles
and if we adopt a Rouse levéftee draining approximation  5nnr0aching more closely thar- 2a.
to the hydrodynamics, Eq2) will hold, with a negligible. In order to prevent shear thickening from the first mecha-
The viscous interactions of E) will dissipate a power  nism, we consider the case where either the fluid is free
draining (that is, we adopt a Rouse level approximation to
P= EE [(vi—V))- - (v;=v))+28|v;|?]. (3)  the hydrodynamics which will be a very poor approximation
277 at high concentrationsor the drag coefficients are indepen-
dent of separation, save for some cutoff at separations sev-
eral times larger than the particle radiasWe can arrange
*Electronic address: rsfL0@phy.cam.ac.uk this second case in the following way: the drag coefficients
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of Eq. (2) arise from fluid flow in the gaps between particles, —

treated in the lubrication approximation. Some of the com- E<
ponents ofa will therefore diverge as the hard cores come

into contact(a particle separation ofr2). The repulsive

force of Eq.(4) thus serves to hold the particles at a greater D

separation wherea, although not strictly constant, is a
weaker function of the interparticle gap.

We must now consider what experimental systems con- —
form to the requirements of our model; a reasonable approxi- -
mation may be produced by a swollen polymer brush chemi- —

cally attached to the particle surface. Here the conservative
force is produced entropically as the brush is compresset%g
and the drag coefficients are well represented by lubricatio
theory for closely approaching particles.

Large computer simulations of such colloidal systems un-Tpe |ocal velocity of the string phase, which, in a free drain-

der simple shear have recently been perfor&d]. It is ing approximation to the hydrodynami¢giscussed below

observed that at low shear rates, the particles order into ge assume to be approximately undisturbed by the presence
“string phase” in which the particle centers are arranged ingf the cluster. will be

lines parallel to the “flow” direction. These lines frequently
form a well ordered, triangular array in the *“gradient- u=—y(r-y)x. (6)
vorticity” ('y-z) plane.(See[7] for a theoretical treatment.
If the shear rate is increased, the importance of the conthere will therefore be a flux of particles onto the cluster
stant repulsive term in Eq4) which stabilizes the string surface, given by
order will be reduced. It is then observed that disordered R
regions(as well as dislocationsappear in the flow4,6] and J=n-(v—U)pg, @)
this change is associated with shear thicker(@though in ) i .
other systems, shear thickening can occur from a disorderetfn€repo is the number of particles per unit ar€zD) or per
state. It should be noted, however, that in the simulations,Unit volume(3D) in this phase. _ _
the disordered regions are often comparable in size to the The fluxJaccording to this formula may have either sign.
simulation cell and so their dynamics are affected by thdt iS & simple matter to write down an equation embodying
periodic boundary conditions. the assumption that particles may be accreted with greater
The sections below describe and solve a model for th&ase than they are lost by the clug#s an extreme example,
dynamics of an isolated cluster in such a dispersion. If clusone might sed=0 if n-(v—u)<0]. However, this nonlinear
ters are not dilute, or grow very large, as will happen if theconstraint leads to a difficult mathematical problem as the

volume fraction defined on the hard sphere radits high,  flux J would no longer be a linear function af (v—u) and
then the isolated clusters will aggregate, and we expect sonegs. (8) and (9) would be fully nonlinear partial differential

FIG. 1. Schematic picture of a cluster in a simple shear flow.
imensions s') is the angular velocity of the cluster, approxi-
ately equal to one-half the shear rate.

kind of logjam (as analyzed, for example, [8]). equations. A numerical solution would then be necessary.
For our system, where the hydrodynamic forces are inde-
Il THE MODEL pendent of separation for small separations, | shall make the

simpler assumption that the particles are torn from the cluster

Consider either a two dimensionéD), or three dimen- in the same manner in which they are added. We thus inter-
sional simple shear flow whepey,z are unit vectors in the Pret negativel as removal of particles from the cluster, and
“flow,” “gradient,” and (in 3D only) “vorticity” direc- the growth equation for the cluster may readily be con-
tions, respectively. The bulk string phase deforms in simplestructed. In 2D, we adopt plane polar coordingtes} with
shear, with a uniform strain ratg, and we consider an iso- the 6=0 axis being parallel ta, while in 3D we use spheri-
lated cluster that has formed in this bulk flow. The cluster iscal polars{r,6, ¢} with =0 being in thez direction, and
a random glassy region of the colloidal particles composingy— /2, =0 in the x direction. In these coordinates, the
the string phase, and resists the local affine deformafion growth equation in two dimensions becomes
present in the string phase. It therefore rotates as a rigid body

v_vith some a_ngular V.eIOCiton wzin thg bulk flow of par- a_r+w(9_r:Ja2 a ’ (8)
ticles. The situation is shown schematically for the 2D case at a0 h
in Fig. 1. o . . '
We consider the case where the dimensions of the clustd¢Nile in three dimensions we find
are much greater thaan, the colloid radius. In this limit, the or o a
string phase may be regarded as a continuum. E+ wﬁz\]ae’ "k 9

Let the unit normal to the surface of the cluster at position

r from its center ben, then the velocity of this point of the \yhereh is the gap between the hard sphefekradiusa) in
cluster is the string phase. These equations are homogeneauarid
therefore do not single out a preferred size for the clusters in
V=wXT. (5)  the flow.
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The factor of @/h) in Egs. (8) and (9) represents the terms ofO(e€). Fore<0.4, this corresponds to an axial ratio
effect of the volume excluded to the particles, reflecting thefor a cluster, of less than 2. Furthermore, for such a cluster,
fact that the surface of the cluster is a density wave in the
concentrated system, and so its velocity may be high, even
when the individual particles are moving slowly. This is the
same physics that governs the growth of traffic jams on ur-
ban streets; the individual vehicles may be moving slowly therefore in the basis,y}
while the boundary between moving and stationary vehicles
can have a much larger velocitin the opposite direction

w=%/+0(6), (15)

1o0r .
cosf+ T —sin 6

See, for exampld9]. R By
Given that the system may be concentrated, it is important n~ , (16
. . - .. K 1 dr
to consider the applicability of the free draining approxima- sin 60— = —cos 6
tion in the growth equation. For a strictly 2D system, it is rae

clearly inappropriate, as the particle contacts will percolate at ) )
a Iowyarezg l?ragtion; howeveri, if the 2D system Izonsists of2nd the flux of particles onto the surface is, from £,
disks at a fluid-fluid interface, then free draining may be a .
good approximation up to high area fraction. JZPO(E>Z
In 3D, we define a “hydrodynamic volume fraction” h/2
ényar for the string phase, in the following manner: if the
suspension is diluted with solvent to increase its volume by
large factorL, then the volume fractionpy, of this new

r sir(ze)—%cos(za) . (17)

g’he equation of motion after the change of variables

dilute suspension may be measured from its bulk viscosity t=tyl2, (18)
74, Using the Einstein relation 3
pod” _ p (19
Naw= 70l 1+ (5/2) ] (10 h '
We then define the hydrodynamic volume fraction by and dropping the tilde on the new time variable, is
Dhyar= L bt - (11 o o _ i o
pr + 75 P r sin(20) aé’005{20) . (20

Let the string phase be at a volume fractipg, 4, defined on
the radius of hard sphere repulsion; we therefore expedEquation(20) may readily be transformed into a conserva-
Dhydr= Phard= Pmax fOr some maximum packing fraction tion law:
dmax- Furthermore, letp,s be the hydrodynamic volume

2
fraction in the cluster. Thena(h) will diverge as ot oaq _
ot + ﬁg{r [1+p cog26)]}=0, (22
. . (12 i
h  1— dnad! Pmax from which we see that
2m 2
close t0¢ay. Let the physical rate of approach of particles %f ;rzd o= _%[1+p cog26)]lg"=0, (22
0

to the cluster surface hg,= n-(v—u), then the speed of the

cluster surface will b¢Eg. (9)] or in other words, the total area of the cluster is conserved.

a a%pgu The cluster does not therefore increase the number of par-
Veu=a%p0| = |V~ ——— (13 ticles it contains, but it will increase the viscosity of the
surf Po h/ %P 1= brord b ¢ _ \ )
hard” “"max suspension as it becomes more elongated in the compression
and the average back flow velocity will be or extensional directiong.e., x=y)/v2]. _
Equation(21) possesses the obvious stationary solution
d’clus_ d’hydr

(14) , 1

' Oc1+p cog26)’ 23

v &~ Up.
back 1- (bhydr P

In particular, the rati® pae/v 0 as the maximum pack- L . . . . .
ingpfraction Dmax IS aptgrccl;acsﬁref; Thus back flow bepcomesw_h'Ch. IS an e]hpse W'th major axis para]lel to the “gradlent’j
negligible and it is a reasonable approximation that the Veg|rect|on. This solution has the unphysical limit that the ratio

locity of particles in the string phase is not disturbed by theOf major to MINOT axes _d|\{erges @%1_. The SOIU“Q” Is of
presence of the cluster in this limit. course not valid in this limit, but the origin of the divergence

may readily be seen; for, suppose the cluster becomes ex-
tended in the compression direction from accreting patrticles,
lll. THE EQUATION FOR NEARLY CIRCULAR and then rotates a little beyond this direction. Accretion will
CLUSTERS IN 2D then occur preferentially on the side nearest the flow direc-
For a near|y circular CIUSteE: (1/r)((7r/(90) is a small tion, and the effective angulal‘ VelOCity of the boundary of the

number and consequently | truncate E8), retaining only  cluster will be reduced fromy/2. The p—1 limit corre-
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sponds to this effective angular velocity tending to zero, as
will be seen quantitatively in the next section. In practice,
what will actually happen is that as the axial ratio of the
ellipse increases, the approximation that the material angular
velocity w of the cluster stays equal tg/2 will break down.

The cluster will rotate more nearly as a one dimensional rod,
ie.,

Wrod™ 7 sir? Omaj» (24)

where 6, is the angle the major axis of the ellipse makes

with X, and will be greater tham/4 so thatw,,q> y/2. This
will alleviate the problem, sweeping the growing cluster
more rapidly past the compression direction.

IV. ANALYTIC SOLUTION FOR NEARLY CIRCULAR
CLUSTERS

To solve Eq.(21), which is a quasilinear partial differen-

PRE 58

FIG. 2. Solution for a two dimensional cluster, wigh=0.5.
Nine configurationgshapes of the clustefa)—(i) are shown for

tial equation(QLPDE), we introduce a characteristic coordi-

nates, so that

equally spaced times covering a whole period of the evolution, and
such that in(i) the cluster has returned to its initial state. The flow
direction is left-right, and the initial shape of the cluster, shown in
(a), is a circle.

r’=r2(s), 6=6(s), t=t(s). (25)
Therefore 1 . ( —p\¥? ; 34
c=——=tan | ——]| tanéfy|.
dr? ar2de or? dt Vi=p 1+p
ds 90 ds ' ot ds @9
s dfds 4t ds A solution in the fornr (6,t) may then be obtained by elimi-
. . , nating 6, between Eqs(32), (33), and(34).
and by comparison with Eq21) we find For circular initial conditions this leads to
a_, 27) 1
ds ™’ r(o)= —————
V1+p cog20)
d—rzzzr2 sin(20) (28) 1+p 12
o2 sz ELTIN
xX9q 1+
de o 1+ (Hp tartA -
E—l-ﬁ-p cog26). (29 1-p
From Egs.(28) and(29) we see that where
ds [ (1-p\"?
20| =2 A=tan 1[(— tand; —\1—p2t. 36
r“(da)’ (30) 1+p p (36)

which allows an easy analytic solution, for let us introduce alThe curve describing the cluster outline is therefore periodic
new variabled, which is an integration constant of E@Q9),

and allows us to specify the initial conditions

in time, with period#/(y1— p?).
A plot of this solution at nine equally spaced times cov-
ering a complete period of the motion ape 0.5 is shown in

r?(6,t=0)=rg(6o), 31 Fig. 2.
then the solution is V. THE EQUATION FOR NEARLY SPHERICAL
) ) r2(0p)[ 1+ p cO20)] CLUSTERS IN 3D
A 1+p cog26) (32 In analogy to two dimensions, we assume that both
(1/r)orlod¢ and (1f)dr/96<<1l. Neglecting the squares of
where small quantities, we find that since
. 112 i .oar Xar 3
= -7 — o
f=tan 1, tan{\1—p“(t+c)} (33 n 26 <70’ (37
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then in the basi$x,y,z}, then from Eq.(43)
_ sing Jr cosé cos¢ Ir
— - — — B(1+p cog2 =— 46
Slnecos¢+rsin0a¢ . 5 B Sn24) d¢[ (1+p cod42¢))] (46)
“ in 6 sin é Cos¢ dr cosé sing or 1 d
n~| sin@sin¢g— ————— —
rsinddeo r 36 ASing de[A cos @ sir? ]=+N\, (47
sin @ ar
cos o+ ———5 where \ is an arbitrary real separation constant. Equation
(38)  (46) solves immediately to give
Thus p
B(¢)=exp (A —2)5c0824)|, (48
a
J:po(h)  Sin24)si0-cos26) 3 ¢ while Eq. (47) in the ranged e (0,7/2) gives
1 ar ’
~ Zsin(24)sin(26) |, (39) AG)— J1—cos@ (¢ 2\ sir? 0 de. 49
2 30 (0)= = (49
sif  Jo,J1—cosé

and with a change of variables . . I .
where 6, is arbitrary. The same qualifications apply to this

solution as to the two dimensional cdsey. (23)].

t= %y (40)
VI. ANALYTIC SOLUTION FOR NEARLY SPHERICAL
Poa4 CLUSTERS
P="H (41) . . .
Equation(43) is once more a QLPDE, which we tackle by

introducing a characteristic coordinageLet
and dropping the tilde on the new time coordinate, the equa- 9

tion of motion becomes t=t(s), 6=6(s),
ar or = 33 50
=+ 96 =P sin(2¢)sif6—p cos(2¢) d’ p=¢(s), r°*=r3(s). (50
p or Then Eq.(42) leads to
- Esm(2¢)sm(26) 20" (42 dt
d—zl, (51
This may readily be transformed into the conservation law S
ar® 3 5 do
{r [1+p cog2¢)]} gs ~ 1tp cod2¢), (52
r=2 T s g)cos o sitolp)=0, (43) d_ o :
Snd ag{r [sin(2¢)cos @ sin“o]p}= Js =P Sin(2¢)cos 6 sin 6, (53
from which we see that 3
d (2m (ol E=pr3(2+sin2 6—2 cog 6)sin(2¢), (54)
—f f =r3sin 6dod ¢
dt 0 0 3
and from the conservation law,
- . r3 2
I—ngos'” b3ll+pcod2d)]  dé 1dr®  d’¢ds [ sing do| 'd[ sine do
. - 3ds g2 dé |sin2¢) ds| dssin24) ds|’
2@ ™
—f pglsin2¢)cos o si? 6] dp=0+0. (59
¢=0 _
6=0 Equation(55) integrates to
(44)
In other words, the volume and hence total number of par- r3oc — . ! . (56)
ticles in the cluster is conserved. [sin 6/sin(2¢)](d¢/ds)(do/ds)

The stationary solutions to E¢43) are given by separa-

tion of variables: let Upon integrating Eqs(52) and (53), we will introduce

two constants, which we choose so that ¢,, =6,
r3(0,,1)=A(0)B(¢), (45  whens=t=0. The initial shape of the cluster is described by
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r3(6,¢,t=0)=r5(6o, o). (57
From Eq.(56) the solution for all subsequent times will be

r3(60.¢0)[1+p cog2¢0)]cos b, sir? b,
[1+p cog2¢)]cos 6 sir? @ '

r3(6,¢,t)=
(58)
Equationg51) and(52) readily integrate as in the 2D case

to
1-p -
1+p 1+p
=t\1-p?, (59

while for Eq. (53) we have

1/2
tan ¢

1/2
1 tan ¢,

tan 1

—tan

0 de’ t ) dt’
[ =] S 26115 4o

6'=6,c0S 6’ sin 0’ t’

¢ i !
N -
¢'=¢9 1+p cog2¢’)
FIG. 3. Solution for a three dimensional cluster, wjik-0.5.
(60) Nine configurationgshapes of the clustefa)—(i) are shown for
equally spaced times covering a whole period of the evolution. The
flow direction is left-right. The cluster is initially spherical {@),
and returns to this shape (). To give some impression of the three
[1+p cog2¢)]Y? dimensional form of the cluster, what is plotted is the projection of

random points on the cluster surface, onto ke plane.

which leads to

(cos(ZG)—sin(ZG)
sin(26)

€c0g26,) —sin(26g) " _ _
Sin20) [1+p cod2¢0)]"% (61)  will turn out to be the factor controlling the value bf; .

0 From the growth equations derived in Secs. IV and VI, we
Eliminating 6, and ¢, between Eqs(58), (59), and (61) see that in two dimensions the clusters which are circular at
leads to an equation far( 6, ¢,t). Again the solution is pe- time t=0 are unchanged by the transformatigr- —t, 6
riodic in time, with period/(yy1—p?). — a— 6}, while in three dimensions they are invariant under

Figure 3 shows the solution for an initially spherical clus-1t—~—t ¢—m—, 0—0}. Therefore if the stress tensor
ter with p=0.5. The way the figures are shown is to choosdS calculated in a free drainintokes dragapproximation,
750 random directions in space, and for each, the corré¥€ Will find thatN,=0.

sponding point on the surface of the cluster is shown pro- 1N€ pair drag part of the hydrodynamics thus provides the
. . e A A L only contribution to the first normal stress difference, and in
jected onto the “flow-gradient{i.e.,x—Yy) plane. This gives

some indication of the three dimensional form of the cluster.Order to crudely estimate the effect of the cluster upon the

. . . . stress tensowr, consider the radial component of the velocity
The images are for nine gqually spaced times covering B particles relative to the cluster surface, i.e
complete period of the motion. T

VII. ESTIMATES OF THE FIRST NORMAL STRESS vi=(v=u)-r, (62)

DIFFERENCE - . .
where positivev; corresponds to particles leaving the surface

We now turn to the possible rheological consequences off the cluster. We now consider another important effect of
the model, and in particular try to estimate the first normalthe hard sphere conservative interaction, for it introduces a
stress differencél; = o~ oy, . In Sec. Il it was shown that physical distinction between the directions wherehas dif-
the solvent back flow from particles aggregating onto theferent signs. Whem; is negative, the bonds in the cluster
cluster surface may be neglected at high volume fractiongannot deform, because the particles press against their hard
thus justifying the assumption that the surrounding stringsphere potentials. Consequently, the compressive force in the
phase is undistorted by the presence of the cluster. This saibipnds along a radius may be estimated as
the hydrodynamic interactions of a collection of particles are
not well modeled by a purely free drainingRouse level fcomg™ avy, (63
approximation. Furthermore, the absence of a significant
back flow, which was necessary to derive the growth dynamwhere « is the relevant pair drag coefficient. On the other
ics of the clusters, does not rule out the possibility of a paithand, when a particle is leaving the surface, all the bonds
drag contribution to the hydrodynamic interactions, whichdeep inside the cluster can deform a little, in order to bring
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the surface velocity up to;. An estimate of the tensional 3 DR 60 DR
force in the bonds along a radius is therefore — 2dimensions | — 2dimensions |
——- 3dimensions | — —- 3 dimensions 1
I !
a | |
fexe™ arvr . (64) / |
s | (a) II i 40 L ()] " i
Let H(x) be the Heaviside step function, _ ,'
3 o |
0 if x<0 5 > /
H<x>=[ . 65 = /
l |f X?O, 1| i 20 | II i
then we may estimate the contribution to the stress in the
dispersion from the cluster by, in 2D,
1 (2mr’de .. a 0 ol
o0~ 4 ——aavirt| H(wp) +H(—vp)~, 0.0 02 04 06 08 1.0 00 02 04 06 08 10
clus/0  2a r p P
(66)
o FIG. 4. (a) Plot of the maximal axial rati® /1 min (N0 UNIty
while in 3D encountered in one period of the motion of an initially circular and
3 an initially spherical cluster, as a function ef (no unitg. The
— 1 (2= (=r°sin fdfd¢ way: periodic nature of the motion is illustrated for=0.5 in Figs. 2 and
3D Vauslo Jo 333 Ur 3. (b) Plot of the time average ratid, /|oy,| (no unitg using the
first term in Eqs(66) and(67). The average is performed over one

period of the motion of an initially circular and an initially spherical

Xrr ) (67) cluster and plotted as a function pf(no unitg.

a
H(v;)+H(—v;);

whereAgs is the cluster area in 2D, andy,s its volume in - ¢yjar and spherical initial conditions, respectively. The fig-
3DI. both of Eds. (66 406 he f ‘ h ures also contain data for the maximal axial ratio of the el-
n both o gs.( .) an .( 7, the first term, from the lipsoids in the flow, to give an indication of the range wf
compressive load, will dominate for large clusters. for which the results are valid

‘JUSt. retaining .th's term, we can use it to find a val_ue for In both cases, we see that extended clusters are evidenced
the ratio of the first normal stress differenkig to the vis- by a positiveN,, and bothN, /|| and the maximal axial
cosity enhancement due to the large cluster |oy,|/y. , b 1 , -

; A . 1 xy ratio are proportional tgp for small p. The divergence in
This ratio is significant, because, provided the clusters ar /|o| atp=1 is due to the divergence in the axial ratio
large, it does not depend upon either the size of the cluster%;“chxyaS dipscussed in Sec. IIl, is unphysical '
or their concentration in the suspension. The normal stress ' Y '
differenceN, is also an easily measurable characteristic of
the flow in experiments and simulations. ACKNOWLEDGMENTS
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